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Multiscale Curvature-Based Shape
Representation Using -Spline Wavelets

Yu-Ping Wang, S. L. Lee, and Kazuo Toraichi,Member, IEEE

Abstract—This paper presents a new multiscale curvature-
based shape representation technique with application to curve
data compression usingBBB-spline wavelets. The evolution of the
curve is implemented in theBBB-spline scale-space, which enjoys a
number of advantages over the classical Gaussian scale-space,
for instance, the availability of fast algorithms. The BBB-spline
wavelet transforms are used to efficiently estimate the multiscale
curvature functions. Based on the curvature scale-space image,
we introduce a coarse-to-fine matching algorithm which auto-
matically detects the dominant points and uses them as knots for
curve interpolation.

Index Terms—BBB-spline, curvature function, curve evolution,
curve fitting, diffusion equation.

I. INTRODUCTION

SHAPE representation or analysis is an important issue in
many applications of machine vision, such as character

recognition, automatic visual inspection, fingerprint identi-
fication, and contour matching for medical imaging. More
specifically, the contour of a shape contains a substantial
amount of information about the original shape [7], [12]. One
of the most important parameters characterizing contours is
the curvature at each of their constituent points, particularly
at places characterized by inflection or curvature modulus
maxima, which are usually calledvisual primitives[7]. The
curvature function of the curve is invariant under affine
geometric transformation, i.e., scaling, rotation and translation.
There are psychophysical results showing that curvature plays
a fundamental role in human shape perception and represen-
tation [12].

Since the visual primitives, usually characterized by high
curvature of the curve, occur at different density, it is necessary
that these features be described in a multiscale sense. Thus,
the curvature scale-space image was introduced by Mokhtarian
and Mackworth [8] as a tool for representing planar curves.
This representation is computed by convolving a path-based
parametric representation of the curve with a Gaussian func-
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tion with varying standard deviation. Most classical multiscale
representations of planar curves (see, for example, [7] and [8])
are based on the Gaussian function because the evolution of
curve in such a scale-space satisfies the causality criteria, i.e.,
no new feature points are created when the scale increases [6].

This paper presents a curvature-based multiscale shape
representation using -spline wavelets. In a broad sense, we
attempt to develop a -spline based multiresolution shape
representation algorithm as an alternative to the Gaussian-
based multiscale description. Recently an affine invariant
multiscale representation of planar shapes using-splines was
proposed in [9] where the scale was selected as the order of the

-splines. In this paper we adopt a different approach, we use
the dilated -splines of fixed order for scale-space filtering.
This allows us to use the efficient subdivision algorithm.

The remainder of the paper is organized as follows.
Sections II and III review and present fast filterbank
implementation of scale-space filtering using -spline
technique. Section IV studies the multiscale curvature image
of a curve, in particular the property of fractal curve in
the -spline scale-space. Section V introduces an efficient
algorithm for curve data compression application. Some
experiments are performed to illustrate the performance of the

-spline wavelets. Finally some conclusions and discussions
are presented.

II. CURVE PARAMETERIZATION AND

DIFFUSION IN THE -SPLINE SCALE-SPACE

A. -Spline Kernels

We briefly describe the -spline theory used in the paper.
More details can be found in [1], [2], [4], and [5].

The continuous -spline of order is denoted by ,
which can be generated by repeated convolutions of the

-spline of order 0, as follows:

(1)

where is the zeroth-order -spline, i.e., an impulse with
support .

The discrete -spline of order at scale level is defined
as

(2)

where is a normalized sampled pulse
of width .
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The discrete sampled -spline of order at resolution
is denoted as , which is obtained by directly sampling
the th-order continuous -spline at the scale , i.e.,

(3)

When , the discrete sampled -spline of order is
just denoted as . The inverse operator
is defined as

(4)

One of the notable properties of-splines is that they are
-refinable

(5)

the property that gives efficient multilevel algorithms or sub-
division algorithms (see Section III).

A. Curve Parameterization and Diffusion
Using -Spline Bases

Suppose the input is a discrete set of points
). First we parameterize the curve

using a -spline basis

(6)

where . The approximation coef-
ficient vector is given by

(7)

where can be computed efficiently [3]. If we take-
spline of order , the approximation coefficients are
just the original sampling points of the curve, as often used
in the Gaussian smoothing.

Next, the evolution of the curve at different instances or
resolution levels is achieved by convolving the curve with
a dilated -spline kernel,

(8)

where denotes the th-order -spline
at resolution .

We call the above representationthe B-spline scale-space,
which is quite similar to the Gaussian scale-space where
the evolution of curve is driven by heat diffusion equation.
Due to the central limit theorem, -splines approximate the
Gaussian when the order goes to infinity. But using-splines
we are able to obtain efficient subdivision algorithms for curve
generation and compute the geometric descriptors of the curve
easily.

III. CURVE SUBDIVISION AT CONTINUOUS

SCALES AND DYADIC SCALES

Because of the -refinable property (5) of -splines, we
are able to obtain the evolving curve at a certain instant
in an efficient way. In [5], a fast and parallel algorithm for
the implementation of the smoothing operation (8) is derived.
Here we just present the formula and one can refer to [5] for
more details. The evolving curve at the rational scale
can be computed using the filterbank algorithm

(9)
where represents the upsampling operation applied to

given in (7). The operation denotes the downsam-
pling operation by a factor of .

Equation (9) can be realized by a moving average technique
due to the definition of in (2), as detailed in [5]. The
complexity of the algorithm is , independent of the
scale level, where is the number of original curve sampling
points.

If we restrict the scale level to the dyadic, ,
we can obtain the recursive smoothing between the levels
and . At level , the formula (9) simplifies to

(10)

where is regarded as the original approxi-
mation of the curve. It is easy to establish the relationship of
the evolving curve between two successive dyadic levels as
follows [4], [5]:

(11)

Hence, the evolving curve at dyadic levels can be imple-
mented with only additions due to the binomial kernels in
the convolution [4], [5].

If the curve is represented using -spline bases, it is
easy to extract the geometric information which are usually
characterized by the differential operators. If we define the-
spline wavelet transforms and of the
curve to be the convolution of with the first and
second derivatives of theth-order -spline, respectively, as
in (8), then [4]

and
(12)

where . In other words,
they are just the first and second order differences of the
smoothing curve (9).

IV. GEOMETRIC INFORMATION EXTRACTION

IN THE -SPLINE SCALE-SPACE

A. Computation of the Curvature Function
Using the -Spline Wavelets

The most important and significant description of a planar
curve is its curvature function. The curvature function of the
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curve is defined as

(13)

where , represent the first and second derivative of
, and similarly for , . If is the normalized arc

length parameter, then (13) can be rewritten as

(14)

As the curvature is sensitive to noise, the localization of the
curvature points is obtained by integrating multiple scales. For
the evolving curve according to (8), it is easy to show that the
curvature function at the scalecan be estimated as follows:

(15)
where the two wavelet transform vectors

and can
be computed efficiently using the fast subdivision scheme
discussed in Section III.

B. Curvature Scale-Space Image of the
Curve and Its Properties

For different scale level, the function defined implicitly by

(16)

is called the curvature scale-space image of a curve by
Mokhtarian and Mackworth [8], or the curvature primal sketch
by Asada and Brady [7]. Many tasks in computer vision
such as the curve compression, automatic object recognition
can be performed by identifying the significant points in the
shape contour, which are generally points with high absolute
curvature values.

Using a little more general mathematical analysis, it can be
shown that the curvature edge changes in-spline scale-space
have the same behavior as that of the Gaussian scale-space.
Furthermore, in a discrete sense the extrema or zero-crossing
number of the curve coordinates does not increase as the scale
varies from low to high level. In other words, the scaling or
causality property for Gaussian kernel also holds in the case
of -splines. For detailed discussion, refer to [5].

C. Analysis of Fractal Curve in the -Spline Scale-Space

Fractal curve or surface can be found widely in nature,
for example, in natural landscape, in the turbulent flow, and
even in the fluctuations of the stock market. In this section
we analyze the behavior of such typical shape or texture in
the -spline scale-space, which also shows why multiscale
technique is necessary for fractal geometry description. All
fractal curves encountered in physical models have certain
properties: Each segment is statistically similar to all others;
they are statistically invariant over wide transformations of
scale. The popular model is the fractional Brownian motion
[10], which is self-similar in a stochastic sense with the
power spectrum proportional to , for some exponent

, i.e.,

(17)

where is an absolute constant. The Hurst exponentis used
to describe the smoothness or roughness of the curve and the
fractal (Hausdorff) dimension is given by .

The behavior of a stochastic process is usually characterized
qualitatively by its extrema value distribution [11]. The density
of local extrema for a stationary Gaussian process can be
obtained according to the second- and fourth-order derivatives
of the autocorrelation function or equivalently according to
the second and fourth-order moments of its spectrum P:

(18)

and the derivatives of the autocorrelation function at zero can
be expressed in terms of the power spectrum by

(19)

If the fractal curve evolves as in (8), it is easy to verify that
the power spectrum of the curve at scale is related to the
power spectrum of the curve at scale zero by

(20)

Since the -spline of order is asymptotically equal to
Gaussian function by the following relation [5]:

(21)

their Fourier transforms are related by

(22)

From this relation and

(23)

we can easily estimate the moments of the power spectrum
(19). For fractional Brownian motion, the second and fourth
moments of its power spectrum at scaleare

(24)

Therefore, the density of local extrema of the fractional
Brownian noise at scale is

(25)
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From (25), we can draw the following conclusion about the
influence of scale and order of-spline on the evolution of
fractal curve. If a fractal curve diffused in the-spline scale-
space, the density of local extrema decreases with scale as

or decreases with the order of-spline as . If
the scale is fixed, for larger value of which corresponds
to smoother curve there is lower density of extrema, and vice
versa. This theoretical analysis is consistent with the practical
observations.

Fig. 2 shows the evolution of a Von Koch snowflake curve
in the -spline scale-space. With the increase of scale, the
curve becomes more smooth and has less density of extrema.

V. AN ALGORITHM FOR THE CURVE

DATA COMPRESSIONAPPLICATION

The curvature scale-space image of a curve is equivalently
characterized by its curvature extrema at different scales,
which provide significant information about the contour of
the object. They can be used as a compact and effective
representation for shape analysis. In this section, we introduce
a coarse-to-fine matching algorithm to detect the dominant
points of the curve and apply them to represent a curve.

A. An Algorithm for Curve Data Compression

We present the detailed description of our algorithm in four
steps.

1) Obtaining the Curvature Image of-Spline Scale-Space:
At first, we use the fast algorithm introduced in Section III
to obtain the evolving curve ,

at different scales, where is the number of
original curve sampling points and , are the minimal
and maximal scales. Then the curvature estimation at different
scales are obtained using (15). At this step, one has the
freedom to choose the discrete scale parameters as either the
continuous scales or dyadic scales as in Section III. Usually
the choice of the dense scale resolutions gives better results
than the usual dyadic scales.

2) Coarse to Fine Matching of the Dominant Points:The
locations of peaks in the curvature scale-space image corre-
spond to the corner points of the curve. It turns out that by
looking at the movement of the peaks over several scales we
can localize different types of corner points. At finer scales
we can obtain a good localization of corner points. But due to
the influence of noise or high frequency details, the spurious
points are detected. At coarser scale, we will obtain the overall
picture of the curve, but the locations of corner points are not
accurate due to the smoothing procedure. Therefore, we have
to combine the multiscale information to trace the trajectories
of these dominant points and correct their locations. See Fig. 1
for better illustration. After extracting the local peaks across
several scales, we then chain these fingerprints using the
following coarse-to-fine strategy.

1) The local maxima points are classified into local positive
maxima and local negative minima points. The polariza-
tion does not change with the scale. From the coarse to
fine tracking, these two classes of points are matched
across scales, respectively.

Fig. 1. Multiscale corner detection of a face contour (upper left). More
corner points are detected at finer scales (upper right). In order to suppress
noise, coarser scales should be selected. But the locations of these points are
“migrated” (lower left). The correct detector should integrate multiple scales
together (lower right).

2) A local maximum point at level is said to
correspond to another local maximum point at the
finer scale , if

(26)

where is the predetermined threshold and denotes
the neighborhood of the points. Because of the little
“migration” of the extrema locations, the is chosen
to be monotonically decreasing from the coarse scales to
fine scales so that in finer scales the search is performed
in a small neighborhood and vice versa. The distance

can be measured in the sense of either
or . If the two points in the neighboring scales
match each other, then the location of is corrected
to be the same as that of . This matching procedure
is implemented from coarse scale to fine scale

and repeated several times until the locations of
the corner points are found.

3) Postprocessing of the Corner Candidates:In the sec-
ond phase, the candidate corners are detected and those with
significant changes in direction are identified as corners. At
finer scales, there may be more corner candidates whose
locations are very close and are not necessary for restora-
tion. In order to alleviate such a problem, we introduce the
following geometric criteria to reduce the corner candidates.
Our idea is, if the three consecutive corner candidates ,

, are on the same straight line we consider that
as a phantom corner and remove it. In the implementation we
use the following formula to judge :

(27)

where denotes the length of the line segment between
the two points and . The parameter is usually taken
as 0.9–1.
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Fig. 2. Shrinkage of the Koch snowflake in theB-spline scale-space. As the scale level gets larger, the Koch snowflake becomes more and more smooth
and shrinks to a circle. The evolution of a curve has a similar behavior as that of Gaussian scale-space except that the shrinking speed is different.

One may choose other criteria to refine the detection of
corner points. For example, if the distance of two corner
candidates are within a predetermined threshold, then one of
them will be deleted. In this way, the data points to be stored
can be greatly reduced.

4) Curve Reconstruction Using Interpolation or Fitting
Method: Once the above procedure is completed, we select
the dominant points at a certain scale and store their positions.
Thus a compressed form of curve is obtained. In order to
recover the original curve, we use these corner points as
control knots and selecting some interpolation methods such
the spline and polynomial interpolation to get the coordinates
of the curve at other locations. One may obtain a better
compression ratio at large scale since there are few corner
points, but the recovered curve may also be poor. On the
contrary, good reconstruction quality can be obtained with the
cost of lower compression ratio at small scale. So a proper
scale should be chosen depending on the needs at hand.

B. Experimental Examples

In this section we present some examples to show the
procedure in implementing the above algorithms. Fig. 1 shows
an example for corner detection of a face contour. As can be
seen, at finer scales more points are detected and vice versa.
So the multiscale information should be integrated to find the
correct points.

Fig. 3 is a typical terrain map containing different features
at different locations. We first obtain the curvature image
at different scales. According to the algorithm presented in
Section III, we can choose the scale level freely. In practice
we usually choose the scale level as 1, 3, 5, 7, 9,. The
estimated curvature values at several scales are given in Fig. 4.
We then do the coarse to fine matching across these scales.
The detected corner points at level 1 are drawn in Fig. 5 as
crosses. For better illustration the detected corner points in
a small portion of the curve are shown in Fig. 7. It can be

Fig. 3. Original terrain map curve with 2048 sampling points.

Fig. 4. Curvature functions at scale 1, 3, 5, 7. The curvature scale-space image
is a hierarchical organization of the inflection points of the curve as indicated
by the zero-crossings of the curvature function at multiple scales. In practice,
only a discrete set of scales are sufficient for application. UsingB-spline
technology, we can compute the scale-space image efficiently at any scales.
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Fig. 5. Detected corner points in scale 1, which are denoted as cross “+” in
the curve. The number of detected corner points is 221.

Fig. 6. Recovered curve using spline fitting. The recovered curve is drawn
in dashed dot line. Compression ratio= 9.2670, error= 0.0035.

seen around the-coordinate 138.7, more corner points have
to be assigned in order to record the fine change of the curve
orientation. Between the-coordinate 138.7 and 138.8, only
one point is necessary for the representation of this smooth
segment. In Fig. 6, the reconstructed curve is drawn in dotted
line, which gives almost the same curve as the original one.
In the paper we select the spline fitting for reconstruction.
The compression ratio for this curve is defined as the ratio
between the number of the original curve points over that of
the compressed data points. The compression ratio in this case
is 9.2670, i.e., only 221 points are needed to represent the
original curve with 2048 points. The reconstruction error is
defined as

Error

where is the distance from reconstruction data points to
the original data points and is the number of data points.
Fig. 8 shows the result of curve compression at scale 3. We
can see that there is a tradeoff in selecting the width or
scale of the -spline filter. A large width will remove small

Fig. 7. Zoom in a small portion of the curve to show the multiscale property
of the shape descriptor.

Fig. 8. Curve data compression at scale 3. Top: detected corner points;
number= 210. Bottom: recovered curve; compression ratio= 9.7524, error
= 0.0031.
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details of the boundary curvature while a small width will
permit false concavities and convexities. Therefore, at the finer
scale the reconstruction error is lower with comparatively low
compression ratio. At the coarser scale the reconstruction error
is large with high compression ratio. The compression ratio is
also related to the type of curve data at hand. An intermediate
scale level is recommended in practice.

VI. DISCUSSIONS ANDCONCLUSIONS

We have presented an algorithm for multiscale shape repre-
sentation based on -spline wavelets.

The classical multiscale curve representation is mainly
based on the Gaussian scale-space representation. According
to the criteria of Mokhtarian and Mackworth [8] for multiscale
curve representation, one basic requirement is theefficiency.
Using -spline wavelets, we can obtain efficient subdivision
algorithms and compute the geometric information of the
curve easily. This shows that the-spline scale-space is very
suitable for multiscale curve representation.

The curve representations in the-spline scale-space also
enjoy other advantages over the classical Gaussian scale-
spaces. For example, -spline representation is defined di-
rectly on an initial discrete set of samples, and the outputs
of -spline wavelet transforms are directly used for curvature
computation as shown in (15), thus avoiding possible problems
caused by discretization of continuous Gaussian scale-space.
In other words, the proposed approach iseasy to implement.
Furthermore, since -spline representation is a piecewise
polynomial representation, it is also easy to determine the
properties of the shape of the curve. All of these indicate that
the multiscale -spline representation satisfies the criteria as
described in [8].
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